رده های از ماتریس های نامنفرد و کاربردهای آن ها برای تعیین موقعیت مقادیر ویژه ی حقیقی ماتریس های حقیقی

thesis
abstract

در ابتدا رده های از ماتریس های نامنفرد ارایه میشود. سپس این ماتریس ها جهت به دست آوردن معیارهایr ساده برای تشخیص نامنفرد بودن ماتریس های حقیقی و همچنین به دست آوردن بازه های شمول و غیرشمول از مقادیر ویژه حقیقی آنها به کار برده می شوند. به ویژه مقادیر ویژه غیر 1 از هر ماتریس تصادفی به طور دقیق تر موقعیت یابی شده است.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

بازه های شمول و غیرشمول برای مقادیر ویژه حقیقی ماتریس های حقیقی

تعیین موقعیت مقادیر ویژه ماتریس ها نقش کلیدی در نظریه ماتریس ها و آنالیز عددی دارد. قرص های گرشگورین، بیضی های کاسینی برائر و مجموعه شمول برالدی نمونه های شناخته شده ای از چنین نواحی شمول برای مقادیر ویژه هستند. اخیرا پنا با معرفی خانواده جدیدی از ماتریس های نامنفرد به نام c-ماتریس ها و استفاده از ویژگی های آن ها یک بازه غیرشمول جدید برای مقادیر ویژه حقیقی ماتریس های مثبت به دست آورده است. در ...

15 صفحه اول

کران هایی برای مقادیر ویژه ی اکسترمال یک‏ رده از ماتریس های سه قطری متقارن و کاربردهای آن

در این تحقیق کران های دقیقی برای کوچکترین و بزرگترین مقادیر ویژه ی رده ی خاصی از ماتریس های سه قطری متقارن ارائه می شود. ماتریس های به این شکل در بسیاری از مسائل کاربردی ظاهر می شوند. نتایج زیادی مانند قضیه گرشگورین، استروسکی و برآور وجود دارند که ناحیه ای را که مقادیر ویژه ی یک ماتریس مربعی در آن قرار دارند را تخمین می زنند. اما کران های بدست آمده از این نتایج برای رده ی خاصی از ماتریس های در ...

15 صفحه اول

محاسبه مقادیر ویژه و بردارهای ویژه یک ماتریس متقارن حقیقی با استفاده از الگوریتم ژنتیک

در بسیاری از کاربردهای عملی که نیاز به محاسبه ی مقادیر ویژه ی یک ماتریس متقارن حقیقی می باشد، تنها محاسبه ی تعداد کمی از مقادیر ویژه، شامل کوچکترین یا بزرگترین مقدار ویژه مورد نیاز است. در این پایان نامه مسئله ی محاسبه ی مقادیر ویژه ی یک ماتریس متقارن حقیقی، به مسئله ی بهینه سازی تبدیل می گردد. سپس با استفاده از الگوریتم ژنتیک به حل آن پرداخته می شود. ابتدا الگوریتم ژنتیک، برای محاسبه ی کوچکتری...

15 صفحه اول

احاطه سازی برای مقادیر ویژه ی ماتریس های فاصله اقلیدسی

در این پایان نامه به معرفی ماتریس های فاصله اقلیدسی و خواص آن ها پرداخته و رابطه بین مقادیر ویژه ی ماتریس های فاصله اقلیدسی و مقادیر ویژه ی ماتریس های نیم معین مثبت متناظر مورد بررسی قرار می گیرد. همچنین ترتیب احاطه سازی گروهی معرفی می شودو نیز خواصی از ماتریس های فاصله اقلیدسی کروی بیان می گردد.

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه مراغه - دانشکده علوم پایه دامغان

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023